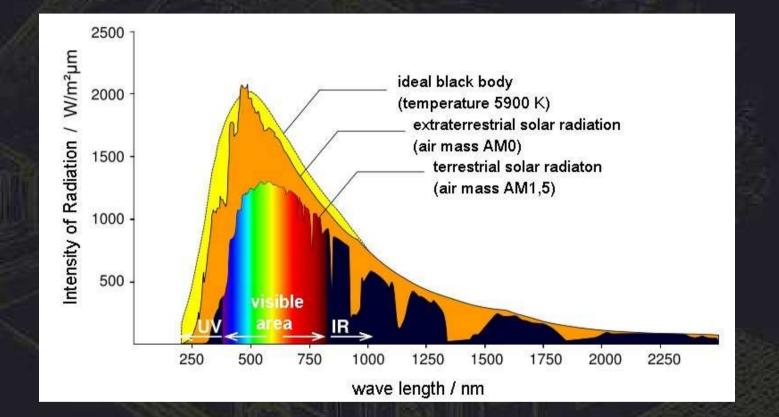


LESSON 3: SOLAR RADIATION

$P = 1.72 \times 10e17 W$

SOLAR THERMAL ENERGY

$\mathsf{P}=100~\mathsf{W}$


Incoming solar radiation energy in a year: $5.42 \times 10^{24} \text{ J}$

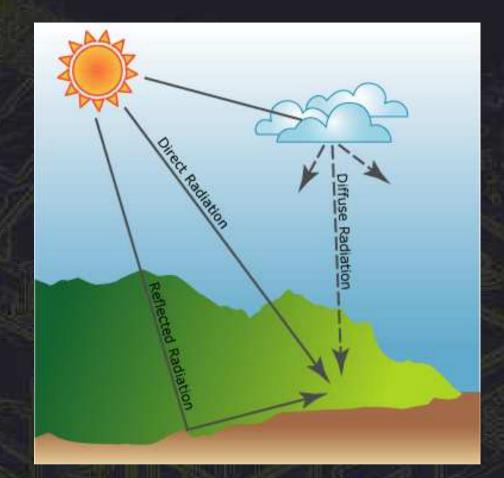
yearly energy need of the whole world: $5 \times 10^{20} \text{ J}$

More than 10 000 times

SOLAR CONSTANT = $1,353 \text{ W/m}^2$

SOLAR CONSTANT

1360 W/m²



GLOBAL IRRADIATION

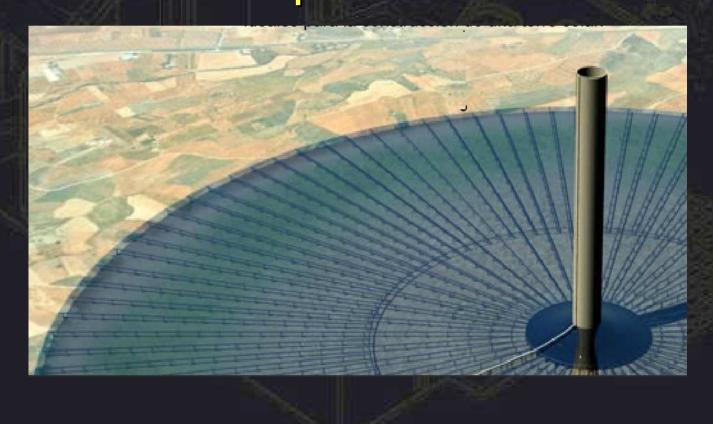
800 - 1000 W/m²

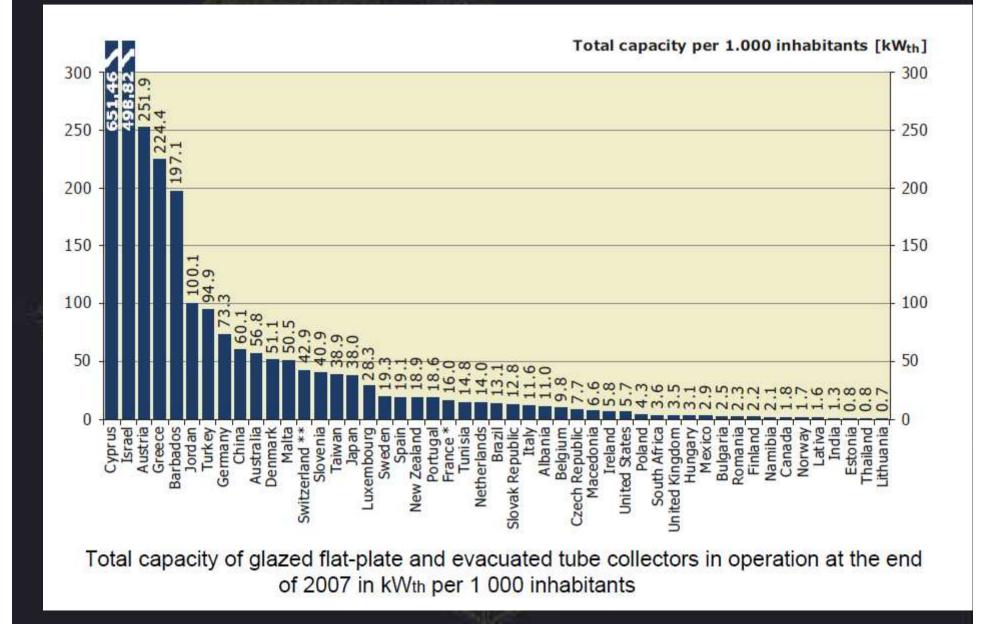
Direct, or also called "beam radiation" is the solar radiation received from the sun without having been scattered by the atmosphere.

< 90°C - low temperature < 300°C - medium temperature

< 800°C - high temperature

Parabolic and solar tower


Solar updraft tower


The first prototype of this technology was tested in Manzanares (Ciudad Real), with a collector area of 240 meters in diameter and a tower of 195 meters. It was in operation for seven years (1982-1989). The plant supplied 50 kW peak.

Solar updraft tower

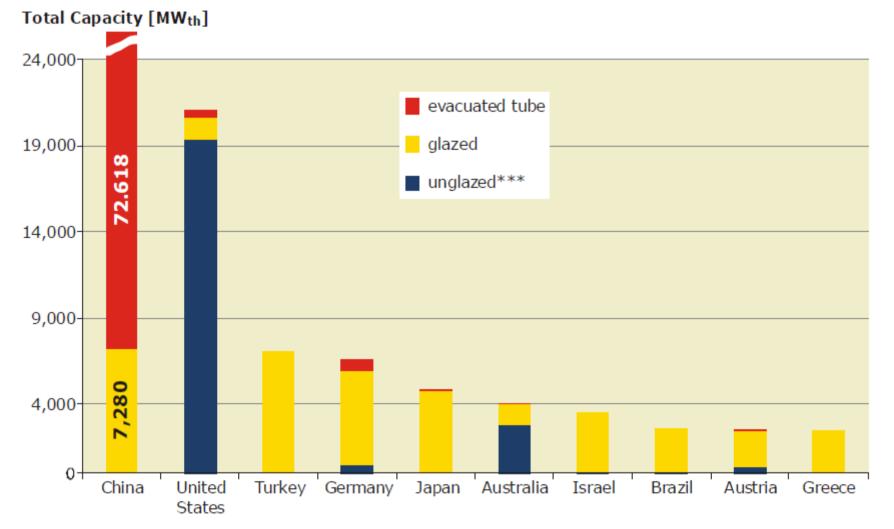
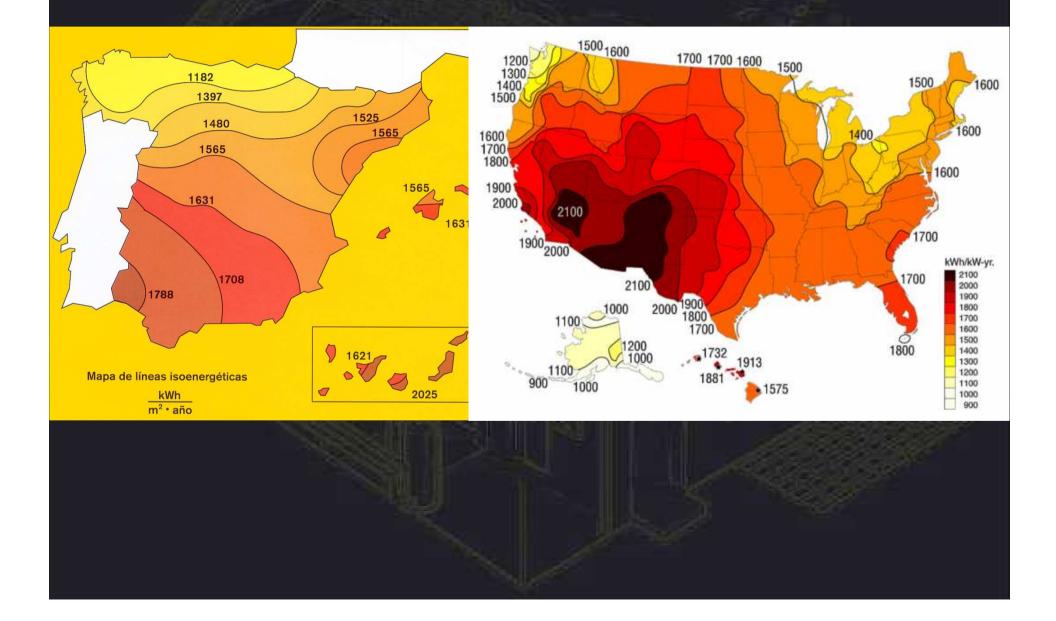
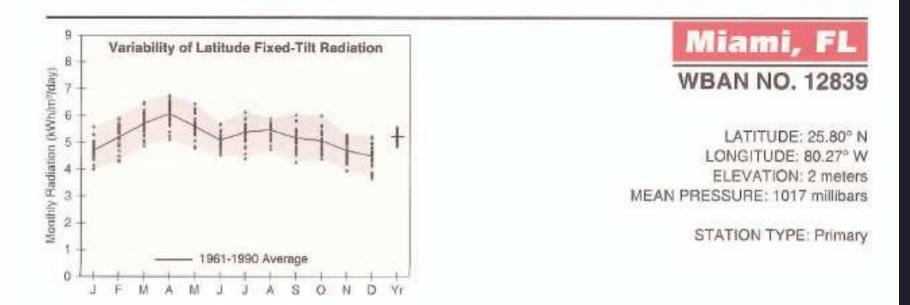



Figure 4: Total installed capacity of water collectors of the 10 leading countries at the end of 2007



FACTORS AFFECTING THE INCIDENT RADIATION

- GEOGRAPHIC LOCATION
- GUIDANCE
- TILT
- TIME OF YEAR
- LOCAL WEATHER CONDITIONS

Solar Radiation for Flat-Plate Collectors Facing South at a Fixed Tilt (kWh/m²/day), Uncertainty ±9%

Tilt (°)		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Year
0	Average Min/Max	3.5 3.1/4.0	4.2. 3,6/4,7	5.2 4.5/5.8	6.0 5.1/6.7	6.0 5.1/6.9	5.6 4.9/6.3	5.8 4,7/6,7	5.6 4,9/6.0	4.9 4.1/5.7	4.4 3.9/4.9	3.7 3.2/4.0	3.3 2.8/3.7	4.8
Latitude -15	Average Min/Max	4.1 3.5/4.8	4,7 4.0/5.3	5.5 4.7/6.2	6.2 5.2/6.8	5.9 5.0/6.8	5.5 4.8/6.1	5.7 4.7/6.5	5.6 4.9/6.1	5.1 4.2/5.9	4.7 4.2/5.5	4.2 3.6/4.6	3.9 3.2/4.4	5.1 4.8/5.4
Latitude	Average Min/Max	4.7 4.0/5.6	5.2 4.3/5.9	5.7 4.976.5	6.1 5.1/6.7	5.6 4.8/6.4	5.1 4.5/5.7	5,4 4,4/6.1	5.5 4.7/5.9	5.1 4,2/6.0	5.1 4.4/6.0	4.7	4.5.	5.2 4.8/5.5
Latitude +15	Average Min/Max	5.0 4,2/6.0	5.4 4.4/6.2	3.6 4.8/6.4	5.7 4.8/6:3	5.0 4.3/5.7	4.5 4.0/5.0	4.8 3.9/5.4	5.0 4.3/5.4	4.9 4.1/5.8	5.1 4.4/6.1	4.9 4.1/5.6	4.9 3.9/5.7	5.1 4,7/5,4
90	Average Min/Max	4.1 3.4/5.1	3.9 3.1/4.6	3.4 2.9/3.9	2.6 2.3/2.8	1.9	1.6 1.5/1.8	1.7	2.1 2.0/2.2	2.7 2.3/3.1	3.5 3.0/4.2	3.9 3.2/4.5	4.1 3.2/4.9	3.0 2.7/3.1

RADIACION SOLAR MEDIA DIARIA SOBRE SUPERFICIES INCLINADAS (kWh/m²·día)														
PAIS VASCO ZONA COSTERA (DATOS EVE)														
ODIENT		ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	TOTAL
ORIENT.	Inclin.	31	28	31	30	31	30	31	31	30	31	30	31	kWh/m ²
S	0	1,333	1,985	2,848	3,876	4,711	5,099	5,093	4,589	3,592	2,503	1,622	1,107	1.169
S	10	1,571	2,229	3,058	4,027	4,794	5,136	5,160	4,740	3,832	2,796	1,907	1,306	1.236
S	20	1,773	2,422	3,199	4,090	4,770	5,059	5,111	4,789	3,985	3,024	2,148	1,475	1.275
S	30	1,933	2,560	3,270	4,064	4,653	4,880	4,961	4,737	4,047	3,182	2,337	1,610	1.286
s	40	2,048	2,641	3,270	3,952	4,442	4,614	4,715	4,584	4,020	3,267	2,471	1,708	1.271
s .	50	2,115	2,662	3,201	3,759	4,144	4,256	4,376	4,337	3,906	3,276	2,547	1,766	1.228
s .	60	2,134	2,625	3,067	3,495	3,770	3,823	3,956	4,007	3,711	3,213	2,564	1,784	1.161
s	70	2,105	2,532	2,873	3,170	3,347	3,359	3,494	3,605	3,441	3,079	2,521	1,762	1.074
s	80	2,028	2,387	2,627	2,795	2,888	2,852	2,989	3,160	3,107	2,879	2,421	1,701	969
s	90	1,907	2,193	2,338	2,394	2,399	2,342	2,462	2,677	2,720	2,621	2,267	1,603	849

FIRST APPROACH FOR CALCULATION:

How much energy is required to heat 150 liters of water from 10

 C to 45 ° C? In Joules and KWh

Water density: 1000 Kg/m3
Specific heat: 4180 J/Kg°C
Wh = 3600 J

2. How many square meters of panel do we need with the best inclination in January assuming that all radiation is useful?

Water consumption

The table below can be used as an indication of hot water consumption per occupant or person in common types of buildings:

Type of building	2. C. N. H. K.	pant per	Peak der occu	33-5030110	Storage per occupant		
	liter/day	gal/day	liter/hr	gal/hr	liter	gal	
Factories (no process)	22 - 45	5 - 10	9	2	5	1	
Hospitals, general	160	35	30	7	27	6	
Hospitals, mental	110	25	22	5	27	6	
Hostels	90	20	45	10	30	7	
Hotels	90 - 160	20 - 35	45	10	30	7	
Houses and flats	90 - 160	20 - 35	45	10	30	7	
Offices	22	5	9	2	5	1	
Schools, boarding	115	25	20	4	25	5	
Schools, day	15	З	9	2	5	1	

Calculate the square footage of panel to be installed to meet the 70% of DHW needs of a hostel with 20 rooms. We assume that the system is capable of extracting 40% of the annual radiation.

Calculate the amount of CO2 avoided if each kWh of natural gas consumed involves the emission of 204 g of CO2.