Curriculum and Professional Development

Dr. Richard Gilbert, USF (gilbert@usf.edu) Dr. Marilyn Barger, FLATE (barger@fl-ate.org)

Center for Mathematics and Engineering

Curriculum is Critical for Program Success

MAGNETSCHOOLS

Curriculum is Critical for Program Success

K5 STEAM Conference

DLJ's Curriculum Follows this Science Subject Matrix				
¢	Nature of Science \& Engineering	Physical Science	Earth Science	Life Science
K	What is an Engineer? Animals as Engineers	Goldilocks Just Right Chairs 3 Billy Goats Gruff (Bridges)	The North Wind \& the Sun Weather \& Climate 3 Little Pigs (Houses)	Visual Life Cycle Models Animal Mascots
1	What is an Engineer? Lego Tower Challenge	Light \& Sound Waves Design a drum to communicate over a distance	Cycles in Space Design a Magnification Tool	Animals as Engineers Design a Tool
2	Engineering for Animals Design an Elephant Trunk	Design a Lego Tower/ Bridge Scale Drawing	Mapping \& Modeling 2D to 3D Design a system to prevent beach erosion	Ecosystems Design a Pollinator
3	Creating Models Boom Town Communities	Measuring Light Laser Light Maze Design	Design a parachute Solar Cooker Investigations	Animal Classification Design a new animal
4	Compare Scientists \& Engineers Design a Totem Pole	K'Nex Car Investigations \& Design	Build a Dugout (Native Americans) Design and Test a Boat Florida History	Garden Design Design a Water Filter
5	Fields of Engineering 3D Printed Catapult Investigations \& Design	Bridge Testing \& Design Design a Home Lighting System	Hurricane Preparedness Plan Design a Lunar Mission (Kennedy Snace Center)	Medical Engineering for the Body Design a Lunar Habitat

Curriculum is Critical for Program Success

Essential Element Examples of Elementary Engineering in Elementary Education

kindergarten through $5^{\text {th }}$ grade classroom teachers integrate the state mandated elementary curriculum using engineering science principles and engineering design practices appropriate for each grade level and spirally connecting these principles and practices upward through all grade levels in the school.

	Physical Science		Earth Science		Life Science	
Nature of Science and Engineering Interactions	Gravitational Forces and Resultant Motion	Electromagnetic Forces and Resultant Motions	Natural Resources	Space Exploration	Life Processes	Ecosystems

In kindergarten through $2^{\text {nd }}$ grade, the focus is to set images and ideas regarding engineering. In the Gravitational Force and Resultant Motion Unit, the students learn what forces are and what effects they can have. The concepts of work and energy are explored.

By $3^{\text {rd }}$ grade qualitative relationships such as direct proportionality, are developed. This time it is students exploring and calculating mechanical advantage

In $2^{\text {nd }}$ grade, measuring scalars takes center stage. In this case, an elephant's trunk is not baggage.
Sol

Professional Development is Critical for Program Success

Professional Development STEM Integration Example

A STEM Integration Example

Levers from an engineers perspective

Center for Mathematics and Engineering

The Mathamatics
Jamerson Faculty pledge

Every student that competes a K through $5^{\text {th }}$ grade education experience at Jamerson will be able to solve the following specific mathematical problems.
(a)
(1) $x(60)=60$
(e) $\frac{(120)}{(60)}=2$
(b) $\quad(2) \times(30)=60$
(c) $\quad(2) \times(60)=120$
(d) $(4) \times(30)=120$
(f) $\frac{(2) \times(60)}{(30)}=4$

The Mathamatics

Jamerson Faculty pledge

Two specific examples

Every student that competes a K through $5^{\text {th }}$ grade education experience at Jamerson will be able to associate a numerical value to a variable.
d is an arrangement of three letters, two of which are subscripts, that can be used up to identify a specific distance in the up direction.

$$
d_{\text {up }}=2 \text { feet or perhaps } \quad d_{\text {up }} \text { equals } 15 \text { feet. }
$$

It varies with the situation!
$d_{\text {is an }}$ arrangement of 5 letters, 4 of which are subscripts, that can be used to down identify a specific distance in the down direction.

> Variables are symbols that are made from any combination of letters and numbers with any arrangement of subscripts and/or superscripts.

Bridge Making and Design Testing

Stability Challenge:

The shape of the bridge does not change with 5 Newtons of force.
The shape of the bridge does not change with 4 Newtons of force.
The shape of the bridge does not change with 2 Newtons of force.

Lukas J. Hefty
But first a bit more math we want them to know

Background on force

The gravitational field strength at sea level is 9.8 Newton per kilogram of mass.
(9.8 Newton/1 kilogram)

What is the weight of the boot?

Oversized cowboy boot with specific mass (75 kg) at sea level in Florida.

Object's weight is because

of the force of gravity acting on the object's mass

Center of the Earth

There is always mass but no gravity means no force (weight).

An object's weight is always equal to the object's mass times the gravitational field strength.

Remember that weight is a scalar quantity!

$$
\begin{array}{|l|l}
75 \text { kilogram } \times 9.8 \frac{\text { Newton }}{\text { kilOgram }}=735 \text { Newton } & \begin{array}{l}
\text { What are } \\
\text { the units for } \\
\text { this } \\
\text { calculation? }
\end{array} \\
\text { How do we say this math sentence in everyday English? }
\end{array}
$$

75 kilograms times 9.8 Newton per kilogram equals 735 Newton

Group Grope: Background Force and Scalar Knowledge Assessment Note: 75 times 9.8 equals 735
(1) A car's speed is 9.8 kilometers per hour, how far has it traveled in 75 hours?
(2) A car's velocity is 9.8 kilometers per hour west, how far has it traveled in 75 hours?
(3) A car's mass is 75 kilograms. If the gravitational field strength is 9.8 Newton per kilogram, what is the force of gravity on the car?
(4) A space probe's mass is 98 kilograms. If the gravitational field strength is 75 Newton per kilogram, what is the weight of the the probe? Is the probe in in Florida? Why?
What math skill(s) must be secure to answer these questions?
What math standard(s) benchmark(s) are successfully demonstrated with correct answers to these questions?
What science standard(s) benchmark(s) are successfully demonstrated with correct answers to these questions?

Bridge Making and Design Testing

Stability Challenge:
The shape of the bridge does not change with 5 Newtons of force.
The shape of the bridge does not change with 4 Newtons of force.
The shape of the bridge does not change with 2 Newtons of force.

Lukas J. Hefty
Finally ready for force represented as a vector

Free Body Diagram Take Home Messages

Free Body Diagrams are used by engineers to study situations that can be described by vectors.

Vectors are very important mathematical tools used by engineers.

Vectors have two parts- a magnitude (a scalar value) and direction.

Any vector can be separated into a vertical component vector and a horizontal component vector.

Intro to Free Body Diagrams

Diagrams that use vectors to describe the forces on an object or a system.

A boot that weighs 735 Newton sitting on a table.

Intro to Free Body Diagrams

Diagrams that use vectors to describe the forces on an object or a system.

If the object is not moving up or down the Free Body Diagram requires two vectors.

This is a very simple example of a Free Body Diagram.

Intro to Free Body Diagrams What are the magnitudes and directions of the two vectors in this Free Body Diagram?

Intro to Free Body Diagrams What are the magnitudes and directions of the two vectors in this Free Body Diagram?

Intro to Free Body Diagrams

 What are the magnitudes and directions of the two vectors in this Free Body Diagram?

This is a simple Free Body Diagram with three ideas represented in its 3 components.

Normal vector
Normal Vector
Center of Gravity (force)
Weight (Force) Vector
Gravitational vector

735 N down

Other Free Body Diagrams get more complicated but the essential idea is to obtain pairs of vectors.

Constructing Free Body Diagram for a Bridge

Clifton England Suspension Bridge

Constructing Free Body Diagrams for a Bridge

Common Vocabulary

Compression
Cables under tension

Vocabulary Check

Normal Vector
Center of Gravity Weight (Force) Vector Compression (vector) Tension (vector)

What bridge component(s) are in tension?
What bridge component(s) are in compression?
What bridge is this?

Constructing Free Body Diagram for a Bridge

What is the total force if all of these force vectors are added together?
What math skill(s) must be secure to answer these question?

What math standard(s) benchmark(s) are successfully demonstrated with correct answer to these question?
What science standard(s) benchmark(s) are successfully demonstrated with correct answers to these question?

Including a Car with this Bridge

Now what is the total force if all of these force vectors are added together?

Including a Car with this Bridge

It is typical to move vector pairs to a local "center of force"

Including a Car with this Bridge

It is typical to move vector pairs to a local "center of force"

Can you still identify the, Normal,
Compression and Tension vectors?

40

Free Body Diagram Take Home Messages

Free Body Diagrams are used by engineers to study situations that can be described by vectors.

Vectors are very important mathematical tools used by engineers.

Vectors have two parts- a magnitude (a scalar value) and direction.

Any vector can be separated into a vertical component vector and a horizontal component vector.

Free Body Diagram Calculation

Any vector can be separated into a vertical component vector and a horizontal component vector.

What is the value of the Compressive force on the bridge deck because of this 100 Newton tension?

Any vector can be separated into a vertical component vector and a horizontal component vector.

Calculation aid for magnitude of horizontal component of resultant vector

Angle from horizontal component
(degrees)

0	1.000
	0.819
36	0.799
37	0.788
38	
	0.000
90	

Horizontal component magnitude divided by tension vector magnitude
(ratio value)

Any vector can be separated into a horizontal component vector.

Calculation aid for magnitude of horizontal component of resultant vector

Angle from horizontal component

| (degrees) | | (ratio value) |
| :---: | :---: | :---: | :---: |
| 0 | 100 N | |
| | | |

Horizontal component magnitude divided by tension vector magnitude

Any vector can be separated into a horizontal component vector.

100 Newton $\times 0.788=78.8 \mathrm{~N}$
(The vector you have times the chart value equals the vector you want!)

Calculation aid for magnitude of horizontal component of resultant vector

Angle from horizontal component
(degrees)

Horizontal component magnitude divided by tension vector magnitude (ratio value)

What is the value of the Compressive force on the bridge deck because of this 100 Newton tension?

0	100 N	1.000
36		0.819
38	$\rightarrow 78$	0.788
90		0.000

100 Newton $\times 0.788=78.8 \mathrm{~N}$
(The vector you have times the chart value equals the vector you want!)

Bridge Making and Design Testing

What the student sees!

Bridge Making and Design Testing

What the bridge feels!

Bridge Making and Design Testing

What the engineer sees!

Material	Cost	Quantity	Item Cost
1 straw	\$300	$3+1+2+2,2400$	
10 cm of tape $-\cdots$ masking or electric	\$100	$2+6 t$	
10 cm of string	\$200	$8 \mathrm{Cl}+$	1800
Total cost	X	\times	¢iv2

Plan:
Discuss possible types and designs for your bridge with your team. Choose the best design and determine the materials needed. Determine the total cost of the design using the table above.

Include a sketch of your bridge below.

Douglas L Jamerson, Ir. Elementary Center for Mathematics and Engineerieg Standardsbased Integrated Engineering Unit

