1^{et} Annual K5 STEAM Conference December 9, 2016

Grade

Curriculum and Professional Development

Dr. Richard Gilbert, USF (gilbert@usf.edu) Dr. Marilyn Barger, FLATE (barger@fl-ate.org)

Curriculum is Critical for Program Success

Curriculum is Critical for Program Success

K5 STEAM Conference

DLJ's Curriculum Follows this Science Subje	ect Matrix
--	------------

			<u> </u>	
Grade	Nature of Science & <u>Engineering</u>	Physical Science	<u>Earth Science</u>	Life Science
к	What is an Engineer? Animals as Engineers	Goldilocks Just Right Chairs 3 Billy Goats Gruff (Bridges)	<i>The North Wind & the Sun</i> Weather & Climate 3 Little Pigs (Houses)	Visual Life Cycle Models Animal Mascots
1	What is an Engineer? Lego Tower Challenge	Light & Sound Waves Design a drum to communicate over a distance	Cycles in Space Design a Magnification Tool	Animals as Engineers Design a Tool
2	Engineering for Animals Design an Elephant Trunk	Design a Lego Tower/ Bridge Scale Drawing	Mapping & Modeling – 2D to 3D Design a system to prevent beach erosion	Ecosystems Design a Pollinator
3	Creating Models Boom Town Communities	Measuring Light Laser Light Maze Design	Design a parachute Solar Cooker Investigations	Animal Classification Design a new animal
4	Compare Scientists & Engineers Design a Totem Pole	K'Nex Car Investigations & Design	Build a Dugout (Native Americans) Design and Test a Boat Florida History	Garden Design Design a Water Filter
5	Fields of Engineering 3D Printed Catapult Investigations & Design	Bridge Testing & Design Design a Home Lighting System	Hurricane Preparedness Plan Design a Lunar Mission (Kennedy Space Center)	Medical Engineering for the Body Design a Lunar Habitat

Curriculum is Critical for Program Success

Essential Element Examples of Elementary Engineering in Elementary Education

Professional Development is Critical for Program Success

Professional Development STEM Integration Example

A STEM Integration Example

Levers from an engineers perspective

The Mathamatics Jamerson Faculty pledge **Every** student that competes a K through 5th grade education experience at Jamerson will be able to solve the following specific mathematical problems.

(a) (1) x (60) = 60 (e)
$$\frac{(120)}{(60)} = 2$$

(b) (2)
$$x(30) = 60$$

(c) (2)
$$x (60) = 120$$

(f)
$$\frac{(2) \times (60)}{(30)} = 4$$

(120)

(d) (4) x(30) = 120

The Mathamatics Jamerson Faculty pledge Two specific examples Every student that competes a K through 5th grade education experience at Jamerson will be able to associate a numerical value to a variable.

is an arrangement of three letters, two of which are subscripts, that can be used up to identify a specific distance in the up direction.

> d _= 2 feet or perhaps d _____ equals 15 feet. It varies with the situation!

d is an arrangement of 5 letters, 4 of which are subscripts, that can be used to down identify a specific distance in the down direction.

Variables are symbols that are made from any combination of letters and numbers with any arrangement of subscripts and/or superscripts.

Stability Challenge:

The shape of the bridge does not change with 5 Newtons of force. The shape of the bridge does not change with 4 Newtons of force. The shape of the bridge does not change with 2 Newtons of force.

But first a bit more math we want them to know

Group Grope: Background Force and Scalar Knowledge Assessment Note: 75 times 9.8 equals 735

- (1) A car's speed is 9.8 kilometers per hour, how far has it traveled in 75 hours?
- (2) A car's velocity is 9.8 kilometers per hour west, how far has it traveled in 75 hours?
- (3) A car's mass is 75 kilograms. If the gravitational field strength is 9.8 Newton per kilogram, what is the force of gravity on the car?
- (4) A space probe's mass is 98 kilograms. If the gravitational field strength is 75 Newton per kilogram, what is the weight of the the probe? Is the probe in in Florida? Why?

What math skill(s) must be secure to answer these questions?

What math standard(s) benchmark(s) are successfully demonstrated with correct answers to these questions?

What science standard(s) benchmark(s) are successfully demonstrated with correct answers to these questions?

Stability Challenge:

The shape of the bridge does not change with 5 Newtons of force. The shape of the bridge does not change with 4 Newtons of force. The shape of the bridge does not change with 2 Newtons of force.

Finally ready for force represented as a vector

Free Body Diagrams

(The diagrams that vectors built)

Free Body Diagram Take Home Messages

Free Body Diagrams are used by engineers to study situations that can be described by vectors.

Vectors are very important mathematical tools used by engineers.

Vectors have two parts- a magnitude (a scalar value) and direction.

Diagrams that use vectors to describe the forces on an object or a system.

Diagrams that use vectors to describe the forces on an object or a system.

If the object is not moving up or down the Free Body Diagram requires two vectors.

This is a very simple example of a Free Body Diagram.

What are the magnitudes and directions of the two vectors in this Free Body Diagram?

What are the magnitudes and directions of the two vectors in this Free Body Diagram?

What are the magnitudes and directions of the two vectors in this Free Body Diagram?

Constructing Free Body Diagram for a Bridge

Clifton England Suspension Bridge

Constructing Free Body Diagrams for a Bridge

Vocabulary Check

Normal Vector Center of Gravity Weight (Force) Vector Compression (vector) Tension (vector)

What bridge component(s) are in tension? What bridge component(s) are in compression? What bridge is this?

Constructing Free Body Diagram for a Bridge

What is the total force if all of these force vectors are added together?

What math skill(s) must be secure to answer these question?

What math standard(s) benchmark(s) are successfully demonstrated with correct answer to these question?

What science standard(s) benchmark(s) are successfully demonstrated with correct answers to these question?

Including a Car with this Bridge

Now what is the total force if all of these force vectors are added together?

Including a Car with this Bridge

It is typical to move vector pairs to a local "center of force"

Including a Car with this Bridge

It is typical to move vector pairs to a local "center of force"

Can you still identify the, Normal, Compression and Tension vectors?

Free Body Diagram Take Home Messages

Free Body Diagrams are used by engineers to study situations that can be described by vectors.

Vectors are very important mathematical tools used by engineers.

Vectors have two parts- a magnitude (a scalar value) and direction.

Free Body Diagram Calculation

Free Body Diagram Calculation

What is the value of the Compressive force on the bridge deck because of this 100 Newton tension?

Calculation aid for magnitude of horizontal component of resultant vector What is the value of the Compressive force on the bridge deck because of this 100 Newton tension?

Angle from horizontal component	Horizontal componen magnitude divided by tension vector magnitude	Any vector can be
(degrees)	(ratio value)	separated into a
0	1.000	horizontal component vector
36	0.819	100 N
37	0.799	
38	0.788	
90	0.000	38

Calculation aid for magnitude of horizontal component of resultant vector

What is the value of the Compressive force on the bridge deck because of this 100 Newton tension?

(The vector you have times the chart value equals the vector you want!)

Calculation aid for magnitude of horizontal component of resultant vector

¹⁰⁰ Newton $\times 0.788 = 78.8$ N

(The vector you have times the chart value equals the vector you want!)

What is the value of the Compressive force on the bridge deck because of this 100 Newton tension?

78.8 N

Lukas J. Hefty

What the student sees!

Lukas J. Hefty

What the bridge feels!

What the engineer sees!

Material	Cost	Quantity	Item Cost
1 straw	\$300	3+ 1+2+2 2400	
10 cm of tape masking or electric	\$100	2+ 12-13	200
10 cm of string	\$200	820+3	1800
Total cost	x	X	9700

100

Discuss possible types and designs for your bridge with your team. Choose the best design and determine the materials needed. Determine the total cost of the design using the table above.

Include a sketch of your bridge below.

Douglas L Jamerson, Jr. Elementary Center for Mathematics and Engineering Standards-based Integrated Engineering Unit