The Florida Advanced Technological Education (FLATE) Center wishes to make available, for educational and noncommercial purposes only, materials relevant to the "EST1830 Introduction to Alternative/Renewable Energy" course comprised of images, texts, facilitator's notes, and other demonstration materials.

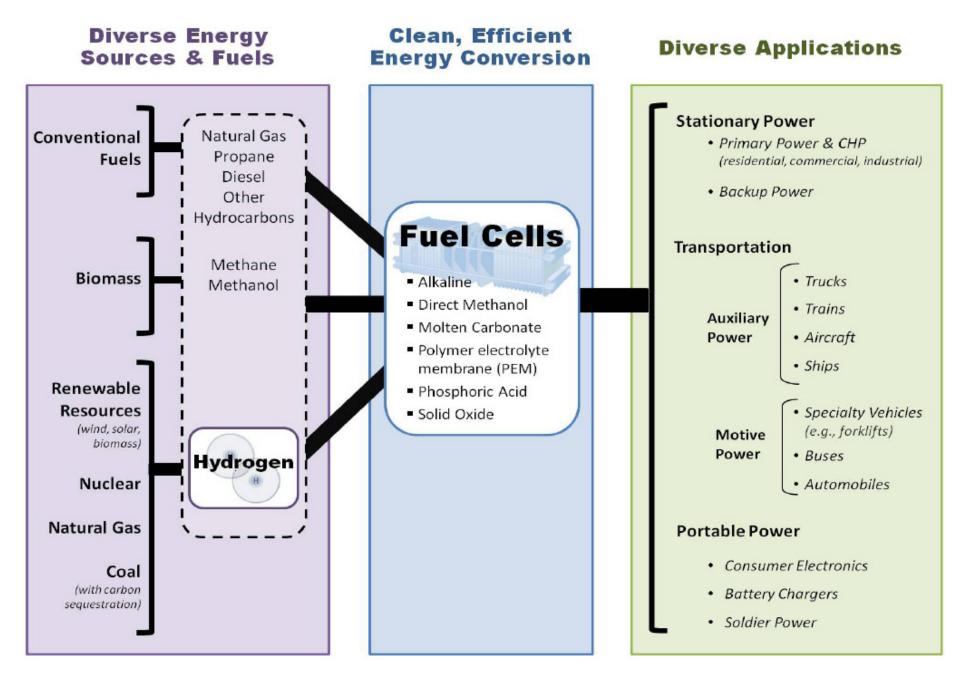
This instructional resource forms part of FLATE's outreach efforts to facilitate a connection between students and teachers throughout the State of Florida. We trust that these activities and materials will add value to your teaching and/or presentations.

FLATE Hillsborough Community College - Brandon 10414 E Columbus Dr., Tampa, FL 33619 (813) 259-6575 www.fl-ate.org; www.madeinflorida.org; www.fesc.org

This material is based upon work supported by the National Science Foundation under Grant No. 0802434 and a Florida Energy Systems Consortium Grant. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the Florida Energy Systems Consortium.

Introduction to Alternative and Renewable Energy

EST1830



3. Energy Production

3.1 Renewable Energy Technologies3.1.5 Fuel Cells3.1.5.1 PEM3.1.5.2 SOFC3.1.5.3 Other Fuel Cells

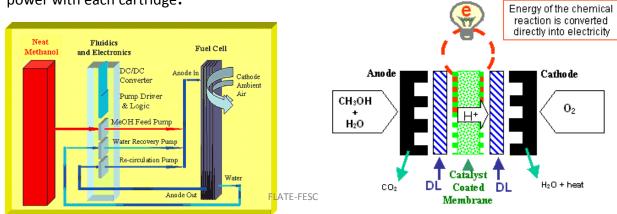
Fuel Cell Types

- Proton exchange membrane (PEM) fuel cells, 80°C
 - Automotive applications (50kW)
- Direct methanol fuel cells (<100°C)
- Alkaline fuel cells, 50 200°C
 - Space applications (1kW+)
- Phosphoric acid fuel cells, ~220°C
 - Commercially available for premium power applications (50kW+)
- Molten carbonate fuel cells, ~650°C
 - Industrial and commercial cogeneration systems (100kW+)
- Solid oxide fuel cells (SOFCs), 600 1000°C
 - Auxiliary power units (25kW) and stationary power applications (100kW+)

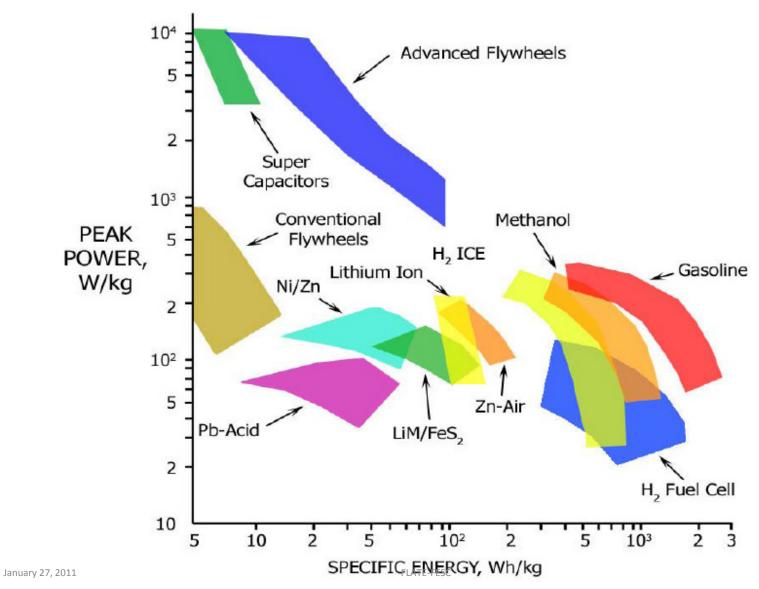
Current Applications of Fuel Cells

Ballard Buses in Chicago

Stationary Power Units


Science and Technology of Fuel Cells, Yang Shao-Horn, Energy Faculty Workshop, MIT, 6/2006

Direct Methanol FC

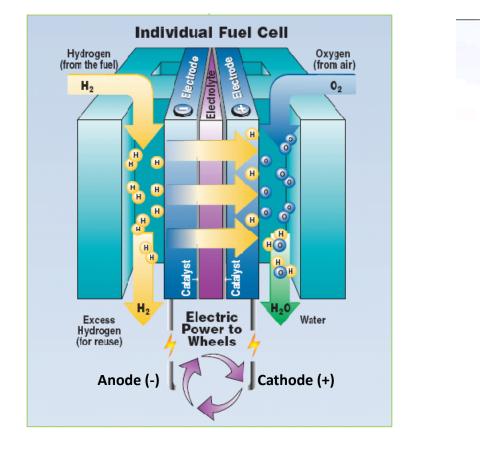


http://www.mtimicrofuelcells.com/news/img/mobionrf.jpg

External power-pack prototype capable of providing up to 25 hours of on-the-go power with each cartridge.

Ragone plot of Energy Storage

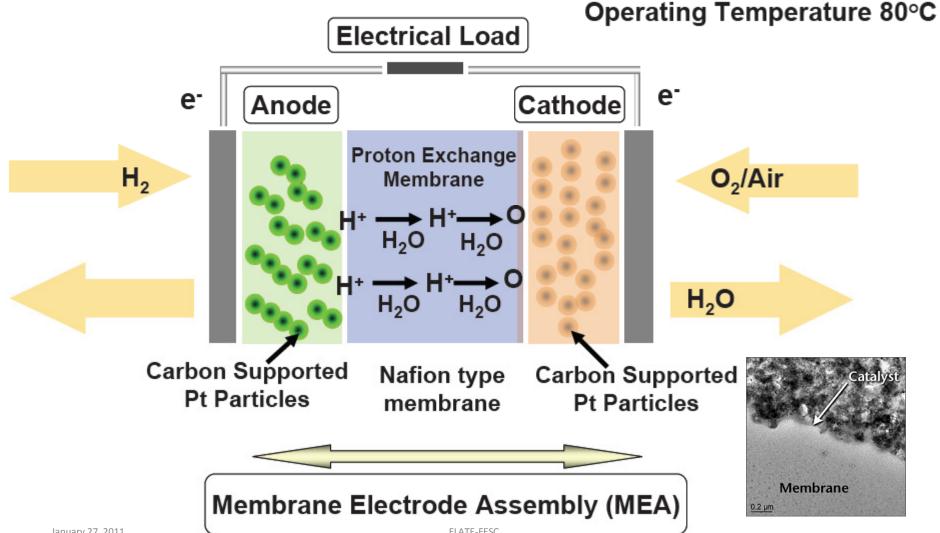
http://ocw.mit.edu/courses/chemical-engineering/10-391j-sustainable-energy-spring-2005/lecture-notes/0412se05ghoniem1.pdf


3.1.5.1 PEM Fuel Cells

Proton Exchange Membrane Fuel Cells

Proton Exchange Membrane FC

- Proton Exchange Membrane fuel cells (PEM)—also called Polymer Electrolyte Membrane—deliver highpower density and offer the advantages of low weight and volume, compared with other fuel cells.
- PEM fuel cells use a solid polymer as an electrolyte and porous carbon electrodes containing an expensive platinum catalyst.
- They need only hydrogen, oxygen from the air, and water to operate.
 - Do not require corrosive fluids like other fuel cells.
 - Hydrogen is typically supplied from storage tanks or onboard reformers.


PEM Fuel Cell Function

The platinum catalyst is extremely sensitive to CO poisoning because CO binds to the platinum catalyst at the anode, decreasing the fuel cell's efficiency. This makes it necessary to employ an additional reactor to reduce CO in the fuel gas if the hydrogen is derived from an alcohol or hydrocarbon fuel. FLATE-FESC

Proton Exchange Membrane Fuel Cells

January 27, 2011

Science and Technology of Fuel Cells, Yang Shao-Horn, Energy Faculty Workshop, MIT, 6/2006

Transportation: PEM FC

RECENT PROGRESS

Vehicles & Infrastructure

- 152 fuel cell vehicles and 24 hydrogen fueling stations
- Over 2.8 million miles traveled
- Over 114 thousand total vehicle hours driven
- 2,500 hours (nearly 75K miles) durability
- Fuel cell efficiency 53-59%
- Vehicle Range: ~196 254 miles

Buses

- DOE is evaluating real-world bus fleet data (DOT collaboration)
- H₂ fuel cell buses have a 39% to 141% better fuel economy when compared to diesel & CNG buses

Forklifts

 Forklifts at Defense Logistics Agency site have completed more than 18,000 refuelings

Recovery Act

 DOE (NREL) is collecting operating data from deployments for an industry-wide report

Source: US DOE 09/2010

January 27, 2011

FLATE-FESC

Hydrogen and Fuel Cell Technologies Update, Dr. Sunita Satyapal, DOE, Fuel Cell Seminar & Exposition, San Antonio, TX, October 19, 2010

PEM FC Challenges

Fuel Cell Cost & Durability

Targets*:

Stationary Systems: \$750 per kW, 40,000-hr durability Vehicles: \$30 per kW, 5,000-hr durability

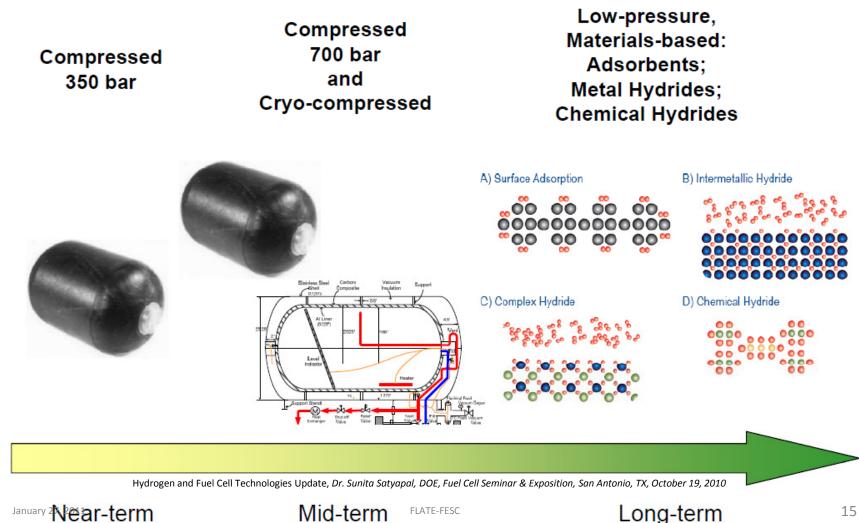
Hydrogen Cost

Target: \$2 – 4 /gge, delivered

Hydrogen Storage Capacity

Target: > 300-mile range for vehicles—without compromising interior space or performance

Technology Validation:


Technologies must be demonstrated under real-world conditions.

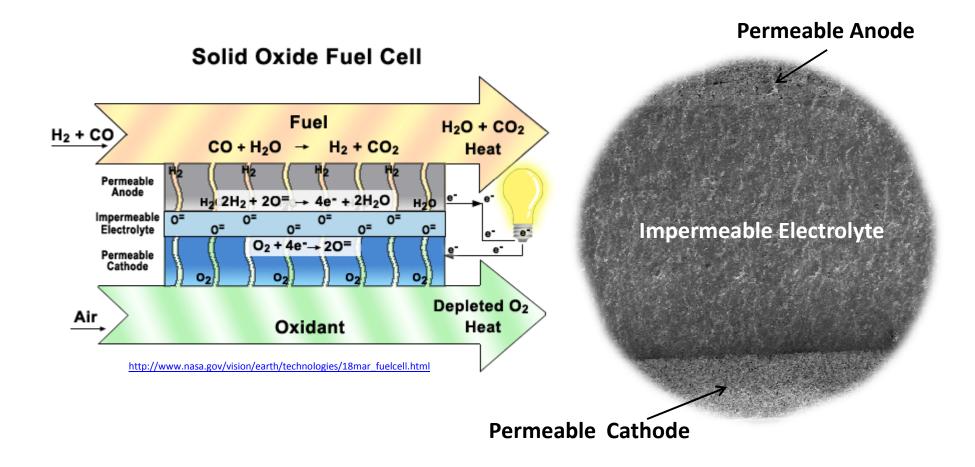
echnolo

arri

Vehicle H₂ Storage Challenge

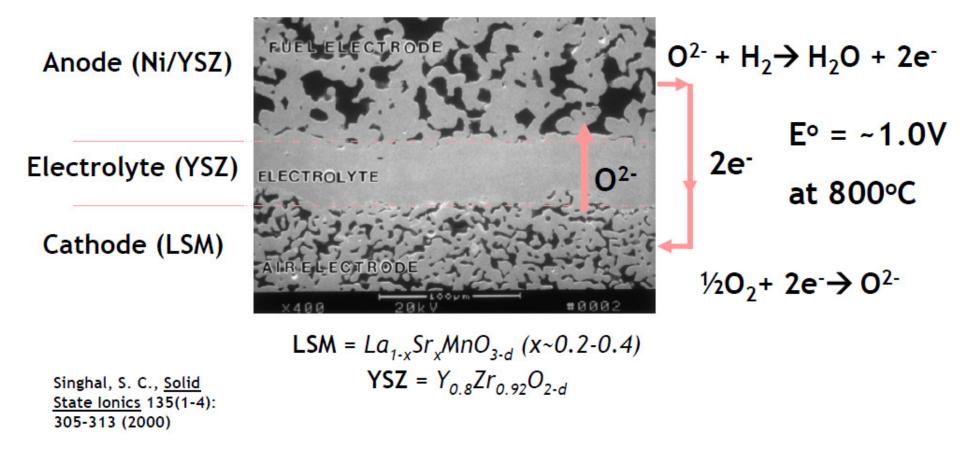
Challenge: Providing a 300 mile driving range without sacrificing passenger and cargo space

Modes of Use										
				FC gen '-1020A CS	FC gen '-1300 ¹	FC gen -1030				
PRODUCTS		E								
	Market	Material Handling	Bus and Heavy Duty	Backup Power	Backup Power	CHP (Combined Heat & Power)				
COMMERCIAL INFORMATION	Application	Forklift trucks – classes I, II and III	Transit buses	Emergency telecom network outages	Supplemental power for telecom networks	Residential Cogeneration				
<u>http://www</u>	ı.ballard.com/									
	Durability/ Lifetime Target	Up to 10,000 hrs	Up to 6,000 hrs	Up to 4,000 hrs	Up to 8,000 hrs	Up to 40,000 hrs				
	Length	107 – 313mm	1446mm	110 – 495mm	230 – 530mm⁴	347mm				
PHYSICAL CHARACTERISTICS	Width	760mm	871mm	103mm	490mm⁴	158mm				
	Height	60mm	496mm	351mm	180mm⁴	259mm				
	Weight (dry)	7.2 – 17 kg	250 – 355 kg	4 – 15kg	~6 – 29 kg	12 kg				
	Number Cells (min/max)	25 – 110	Not applicable	10 – 80	25 – 125	46				
PERFORMANCE	Rated Gross Power (beginning of life)	4.4 – 19.3 kW	75 and 150 kW	0.3 – 3.4 kW	2.3 – 11.3 kW ²	1.2 kW				
	Rated Current	300 Amps	240 Amps	65 Amps	135 Amps	40 Amps				
	DC Voltage	15 – 64 Volts	313 – 626 Volts	6.4 – 51 Volts	17 – 84 Volts	31 Volts				
	Cell Efficiency (reference to LHV) ³	47 – 71%	62 – 71%	51 – 67%	54 – 64%	54 – 63%				
	Fuel Composition ⁵	Hydrogen	Hydrogen	Hydrogen	Hydrogen or reformate	Hydrogen or reformate (>72% H2, <10ppm CO typical)				
uary 27, 2011	Oxidant Composition	Air	Air FLATE-FESC	Air	Air	Air				


3.1.5.2 SOFC

Solid Oxide Fuel Cells

Solid Oxide Fuel Cell

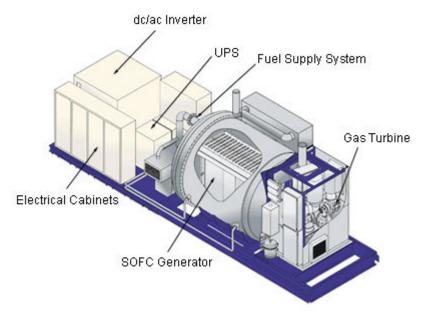

- A solid oxide fuel cell (SOFC) is an electrochemical conversion device that produces electricity directly from oxidizing a fuel.
 - The SOFC has a solid oxide or ceramic, electrolyte.
 - Fuels: Biogas, Natural Gas, Methane, LP Gas, gasoline, diesel, jet fuels, biofuels.
- Advantages of this class of fuel cells include high efficiency, long-term stability, fuel flexibility, low emissions, and relatively low cost.
- The largest disadvantage is the high operating temperature which results in longer start-up times and mechanical and chemical compatibility issues.

SOFC Schematic

Solid Oxide Fuel Cells

 All-ceramic fuel cells with high operating temperatures (600-1000°C)

January 27, 2011

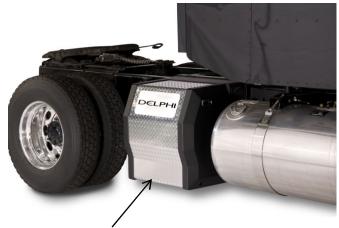

Science and Technology of Fuel Cells, Yang Shao-Horn, Energy Faculty Workshop, MIT, 6/2006

SOFC Designs

Siemens Energy Tubular SOFC Technology

In a tubular SOFC design, air flows through the interior of the cell, and fuel flows on the outside of the cell. At elevated temperatures, the oxygen in the air ionizes and the resulting ions flow through the electrolyte and combine with the fuel on the cell's exterior. This is an electrochemical reaction, so electrons are released. With proper connections, they can flow through an external circuit as electricity.

SOFC / Gas Turbine Hybrid


Since the SOFC stack operates at 1000°C it produces a high temperature exhaust gas. If operated at an elevated pressure, the exhaust becomes a hot pressurized gas flow that can be used to drive a turbine.

Analysis indicates that with such SOFC/GT hybrids an electrical efficiency of 55% can be achieved at power plant capacities as low as 250 kW, and ~60% as low as 1 MW using small gas turbines.

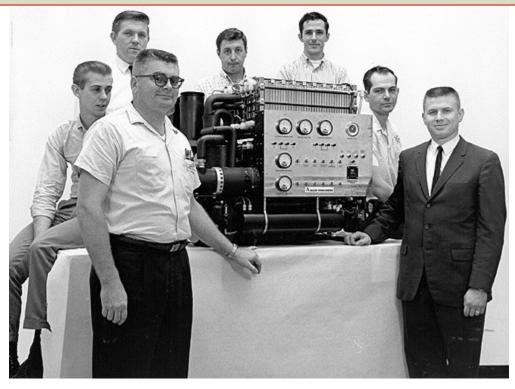
Modes of Use

Stationary Power

Delphi offers its solid oxide fuel cell (SOFC) technology as an auxiliary power unit (APU) to provide up to 5 kW (6.7 hp) of electrical power for use on commercial vehicles during extended idling periods <u>http://www.sae.org/mags/sve/TOOLS/product/8402</u> idling periods.

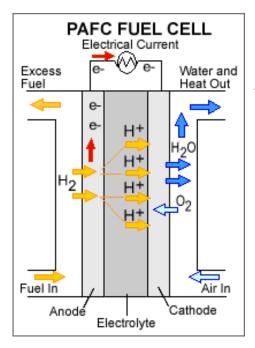
Bloom Box

FLATE-FESC


http://www.bloomenergy.com/

3.1.5.3 Other Fuel Cells

Phosphoric Acid Molten Carbonate Alkaline


Phosphoric Acid Fuel Cell

Phosphoric Acid Fuel Cells (PAFC) were the first fuel cells to be commercialized. Developed in the mid-1960s and field-tested since the 1970s, they have improved significantly in stability, performance, and cost.

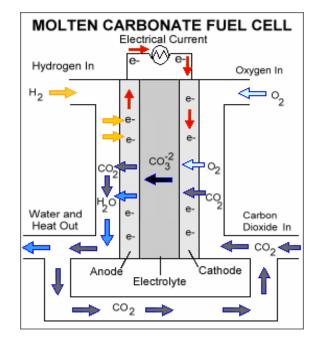
Project team for 5kw phosphoric acid fuel cell system, Allis-Chalmers, 1965."

Phosphoric Acid Fuel Cell

Phosphoric acid fuel cells use liquid phosphoric acid (H_3PO_4) as an electrolyte—the acid is contained in a Teflon-bonded silicon carbide matrix and porous carbon electrodes containing a platinum catalyst.

The ionic conductivity of phosphoric acid is low at low temperatures, so PAFCs are operated at the upper end of the range 150°C–220°C.

A 250-kilowatt phosphoric acid fuel cell powers a police station and electric vehicle recharging station in New York's Central Park

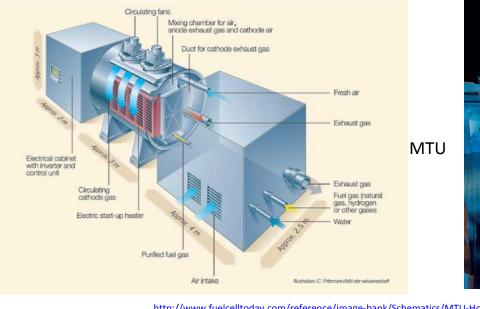

http://www.fossil.energy.gov/programs/powersys tems/fuelcells/fuelscells_phosacid.html

PAFCs are more tolerant of impurities in fossil fuels that have been reformed into hydrogen than PEM cells. They are 85% efficient when used for the co-generation of electricity and heat but less efficient at generating electricity alone (37%–42%).

PAFCs are also less powerful than other fuel cells, given the same weight and volume. So they are typically large and heavy. Plus also expensive. Like PEM fuel cells, PAFCs require an expensive platinum catalyst.

January 27, 2011

Molten Carbonate FC


MCFCs are high-temperature fuel cells that use an electrolyte composed of a molten carbonate salt mixture suspended in a porous, chemically inert ceramic lithium aluminum oxide (LiAlO₂) matrix. Because they operate at extremely high temperatures of 650°C (roughly 1,200°F) and above, nonprecious metals can be used as catalysts at the anode and cathode, reducing costs.

Molten carbonate fuel cells can reach stand-alone efficiencies approaching 60%, considerably higher than the 37%–42% efficiencies of a phosphoric acid fuel cell plant. When the waste heat is captured and used, overall fuel efficiencies can be as high as 85%.

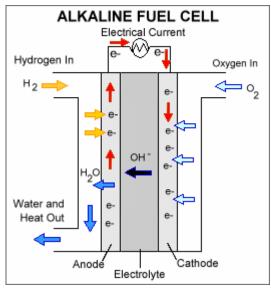
The primary disadvantage of current MCFC technology is durability. The high temperatures at which these cells operate and the corrosive electrolyte used accelerate component breakdown and corrosion, decreasing cell life.

January 27, 2011

Molten Carbonate FC

http://www.fuelcelltoday.com/reference/image-bank/Schematics/MTU-HotModule-Schematic

T-Systems is using this Molten Carbonate Fuel Cell to power part of its Munich data center with biomethane. The system generates 245 kilowatts of power.



http://www.t-systems.de/tsi/servlet/content/t-systems.de/en/228788



Alkaline FC

Alkaline fuel cells (AFCs) were one of the first fuel cell technologies developed, and they were the first type widely used in the U.S. space program to produce electrical energy and water on-board spacecrafts.

- These fuel cells use a solution of potassium hydroxide in water as the electrolyte and can use a variety of non-precious metals as a catalyst at the anode and cathode.
- High-temperature AFCs operate at temperatures between 100°C and 250°C (212°F and 482°F).
- However, newer AFC designs operate at lower temperatures of roughly 23°C to 70°C (74°F to 158°F)

Supplied to NASA by UTC Fuel Cells, three of these 12kW systems provide auxiliary power and drinking water in each spacecraft in the space shuttle fleet.

Space Shuttle Alkaline Fuel Cell Power Plant

AFCs' high performance is due to the rate at which chemical reactions take place in the cell. They have also demonstrated efficiencies near 60% in space applications.

The disadvantage of this fuel cell type is that it is easily poisoned by carbon dioxide (CO_2) . In fact, even the small amount of CO_2 in the air can affect this cell's operation, making it necessary to purify both the hydrogen and oxygen used in the cell.

Comparison of Fuel Cell Technologies

Fuel Cell Type	Common Electrolyte	Operating Temperature	System Output	Electrical Efficiency	Combined Heat and Power (CHP) Efficiency	Applications	Advantages
Polymer Electrolyte Membrane (PEM)*	Solid organic polymer poly- perfluorosulfonic acid	50 - 100°C 122 - 212°F	<1kW - 250kW	53-58% (transportation) 25-35% (stationary)	70-90% (low- grade waste heat)	 Backup power Portable power Small distributed generation Transportation Specialty vehicles 	 Solid electrolyte reduces corrosion & electrolyte management problems Low temperature Quick start-up
Alkaline (AFC)	Aqueous solution of potassium hydroxide soaked in a matrix	90 - 100°C 194 - 212°F	10kW - 100kW	60%	>80% (low- grade waste heat)	 Military Space 	 Cathode reaction faster in alkaline electrolyte, leads to higher performance Can use a variety of catalysts
Phosphoric Acid (PAFC)	Liquid phosphoric acid soaked in a matrix	150 - 200°C 302 - 392°F	50kW – 1MW (250kW module typical)	>40%	>85%	 Distributed generation 	 Higher overall efficiency with CHP Increased tolerance to impurities in hydrogen
Molten Carbonate (MCFC)	Liquid solution of lithium, sodium, and/or potassium carbonates, soaked in a matrix	600 - 700°C 1112 - 1292°F	<1kW – 1MW (250kW module typical)	45-47%	>80%	 Electric utility Large distributed generation 	 High efficiency Fuel flexibility Can use a variety of catalysts Suitable for CHP
Solid Oxide (SOFC)	Yttria stabilized zirconia	600 - 1000°C 1202 - 1832°F	<1kW - 3MW	35-43%	<90%	Auxiliary power Electric utility Large distributed generation	 High efficiency Fuel flexibility Can use a variety of catalysts Solid electrolyte reduces electrolyte management problems Suitable for CHP Hybrid/GT cycle

*Direct Methanol Fuel Cells (DMFC) are a subset of PEM typically used for small portable power applications with a size range of about a subwatt to 100W and operating at 60 - 90°C.

For print copies of this fact sheet, please call the DOE Energy Efficiency and Renewable Energy Information Center at 877-EERE-INF(O)/877-337-3463.

December 2008

